82.11.1 problem Ex. 1

Internal problem ID [18690]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter II. Equations of the first order and of the first degree. Exercises at page 28
Problem number : Ex. 1
Date solved : Monday, March 31, 2025 at 05:57:43 PM
CAS classification : [[_homogeneous, `class G`], _rational, _Bernoulli]

\begin{align*} y^{\prime }+\frac {y}{x}&=x^{2} y^{6} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 254
ode:=diff(y(x),x)+y(x)/x = x^2*y(x)^6; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {2^{{1}/{5}} \left (x^{2} \left (2 c_1 \,x^{2}+5\right )^{4}\right )^{{1}/{5}}}{2 c_1 \,x^{3}+5 x} \\ y &= -\frac {\left (i \sqrt {2}\, \sqrt {5-\sqrt {5}}+\sqrt {5}+1\right ) 2^{{1}/{5}} \left (x^{2} \left (2 c_1 \,x^{2}+5\right )^{4}\right )^{{1}/{5}}}{8 c_1 \,x^{3}+20 x} \\ y &= \frac {\left (i \sqrt {2}\, \sqrt {5-\sqrt {5}}-\sqrt {5}-1\right ) 2^{{1}/{5}} \left (x^{2} \left (2 c_1 \,x^{2}+5\right )^{4}\right )^{{1}/{5}}}{8 c_1 \,x^{3}+20 x} \\ y &= -\frac {\left (i \sqrt {2}\, \sqrt {5+\sqrt {5}}-\sqrt {5}+1\right ) 2^{{1}/{5}} \left (x^{2} \left (2 c_1 \,x^{2}+5\right )^{4}\right )^{{1}/{5}}}{8 c_1 \,x^{3}+20 x} \\ y &= \frac {\left (i \sqrt {2}\, \sqrt {5+\sqrt {5}}+\sqrt {5}-1\right ) 2^{{1}/{5}} \left (x^{2} \left (2 c_1 \,x^{2}+5\right )^{4}\right )^{{1}/{5}}}{8 c_1 \,x^{3}+20 x} \\ \end{align*}
Mathematica. Time used: 1.041 (sec). Leaf size: 141
ode=D[y[x],x]+1/x*y[x]==x^2*y[x]^6; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt [5]{-2}}{\sqrt [5]{x^3 \left (5+2 c_1 x^2\right )}} \\ y(x)\to \frac {1}{\sqrt [5]{\frac {5 x^3}{2}+c_1 x^5}} \\ y(x)\to \frac {(-1)^{2/5}}{\sqrt [5]{\frac {5 x^3}{2}+c_1 x^5}} \\ y(x)\to -\frac {(-1)^{3/5}}{\sqrt [5]{\frac {5 x^3}{2}+c_1 x^5}} \\ y(x)\to \frac {(-1)^{4/5}}{\sqrt [5]{\frac {5 x^3}{2}+c_1 x^5}} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 12.722 (sec). Leaf size: 228
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*y(x)**6 + Derivative(y(x), x) + y(x)/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \sqrt [5]{2} \sqrt [5]{\frac {1}{x^{3} \left (C_{1} x^{2} + 5\right )}}, \ y{\left (x \right )} = \frac {\sqrt [5]{\frac {1}{x^{3} \left (C_{1} x^{2} + 5\right )}} \left (- \sqrt [5]{2} + \sqrt [5]{2} \sqrt {5} - 2^{\frac {7}{10}} i \sqrt {\sqrt {5} + 5}\right )}{4}, \ y{\left (x \right )} = \frac {\sqrt [5]{\frac {1}{x^{3} \left (C_{1} x^{2} + 5\right )}} \left (- \sqrt [5]{2} + \sqrt [5]{2} \sqrt {5} + 2^{\frac {7}{10}} i \sqrt {\sqrt {5} + 5}\right )}{4}, \ y{\left (x \right )} = \frac {\sqrt [5]{\frac {1}{x^{3} \left (C_{1} x^{2} + 5\right )}} \left (- \sqrt [5]{2} \sqrt {5} - \sqrt [5]{2} - 2^{\frac {7}{10}} i \sqrt {5 - \sqrt {5}}\right )}{4}, \ y{\left (x \right )} = \frac {\sqrt [5]{\frac {1}{x^{3} \left (C_{1} x^{2} + 5\right )}} \left (- \sqrt [5]{2} \sqrt {5} - \sqrt [5]{2} + 2^{\frac {7}{10}} i \sqrt {5 - \sqrt {5}}\right )}{4}\right ] \]