82.9.1 problem Ex. 1

Internal problem ID [18682]
Book : Introductory Course On Differential Equations by Daniel A Murray. Longmans Green and Co. NY. 1924
Section : Chapter II. Equations of the first order and of the first degree. Exercises at page 26
Problem number : Ex. 1
Date solved : Monday, March 31, 2025 at 05:56:32 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} y^{3}-2 y x^{2}+\left (2 x y^{2}-x^{3}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.125 (sec). Leaf size: 71
ode:=y(x)^3-2*x^2*y(x)+(2*x*y(x)^2-x^3)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {\frac {2 c_1 \,x^{3}-2 \sqrt {c_1^{2} x^{6}+4}}{c_1 \,x^{3}}}\, x}{2} \\ y &= \frac {\sqrt {2}\, \sqrt {\frac {c_1 \,x^{3}+\sqrt {c_1^{2} x^{6}+4}}{c_1 \,x^{3}}}\, x}{2} \\ \end{align*}
Mathematica. Time used: 12.028 (sec). Leaf size: 277
ode=(y[x]^3-2*y[x]*x^2)+(2*x*y[x]^2-x^3)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {x^2-\frac {\sqrt {x^6-4 e^{2 c_1}}}{x}}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {x^2-\frac {\sqrt {x^6-4 e^{2 c_1}}}{x}}}{\sqrt {2}} \\ y(x)\to -\frac {\sqrt {\frac {x^3+\sqrt {x^6-4 e^{2 c_1}}}{x}}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {\frac {x^3+\sqrt {x^6-4 e^{2 c_1}}}{x}}}{\sqrt {2}} \\ y(x)\to -\frac {\sqrt {x^2-\frac {\sqrt {x^6}}{x}}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {x^2-\frac {\sqrt {x^6}}{x}}}{\sqrt {2}} \\ y(x)\to -\frac {\sqrt {\frac {\sqrt {x^6}+x^3}{x}}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {\frac {\sqrt {x^6}+x^3}{x}}}{\sqrt {2}} \\ \end{align*}
Sympy. Time used: 5.577 (sec). Leaf size: 105
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x**2*y(x) + (-x**3 + 2*x*y(x)**2)*Derivative(y(x), x) + y(x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {x^{2} - \frac {\sqrt {C_{1} + x^{6}}}{x}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {x^{2} - \frac {\sqrt {C_{1} + x^{6}}}{x}}}{2}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {x^{2} + \frac {\sqrt {C_{1} + x^{6}}}{x}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {x^{2} + \frac {\sqrt {C_{1} + x^{6}}}{x}}}{2}\right ] \]