Internal
problem
ID
[18677]
Book
:
Introductory
Course
On
Differential
Equations
by
Daniel
A
Murray.
Longmans
Green
and
Co.
NY.
1924
Section
:
Chapter
II.
Equations
of
the
first
order
and
of
the
first
degree.
Exercises
at
page
24
Problem
number
:
Ex.
3
Date
solved
:
Monday, March 31, 2025 at 05:56:15 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=y(x)*(x*y(x)+2*x^2*y(x)^2)+x*(x*y(x)-x^2*y(x)^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=y[x]*(x*y[x]+2*x^2*y[x]^2)+x*(x*y[x]-x^2*y[x]^2)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(-x**2*y(x)**2 + x*y(x))*Derivative(y(x), x) + (2*x**2*y(x)**2 + x*y(x))*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)