81.8.10 problem 17

Internal problem ID [18649]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter VII. Ordinary differential equations in two dependent variables. Exercises at page 86
Problem number : 17
Date solved : Monday, March 31, 2025 at 05:48:53 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d x}z \left (x \right )+5 y \left (x \right )-2 z \left (x \right )&=x\\ \frac {d}{d x}y \left (x \right )+4 y \left (x \right )+z \left (x \right )&=x \end{align*}

Maple. Time used: 0.131 (sec). Leaf size: 89
ode:=[diff(z(x),x)+5*y(x)-2*z(x) = x, diff(y(x),x)+4*y(x)+z(x) = x]; 
dsolve(ode);
 
\begin{align*} y \left (x \right ) &= {\mathrm e}^{\left (-1+\sqrt {14}\right ) x} c_2 +{\mathrm e}^{-\left (1+\sqrt {14}\right ) x} c_1 +\frac {3 x}{13}-\frac {7}{169} \\ z \left (x \right ) &= -{\mathrm e}^{\left (-1+\sqrt {14}\right ) x} c_2 \sqrt {14}+{\mathrm e}^{-\left (1+\sqrt {14}\right ) x} c_1 \sqrt {14}-3 \,{\mathrm e}^{\left (-1+\sqrt {14}\right ) x} c_2 -3 \,{\mathrm e}^{-\left (1+\sqrt {14}\right ) x} c_1 +\frac {x}{13}-\frac {11}{169} \\ \end{align*}
Mathematica. Time used: 1.464 (sec). Leaf size: 174
ode={D[z[x],x]+5*y[x]-2*z[x]==x,D[y[x],x]+4*y[x]+z[x]==x}; 
ic={}; 
DSolve[{ode,ic},{y[x],z[x]},x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {3 x}{13}-\frac {1}{28} \left (\left (3 \sqrt {14}-14\right ) c_1+\sqrt {14} c_2\right ) e^{\left (\sqrt {14}-1\right ) x}+\frac {1}{28} \left (\left (14+3 \sqrt {14}\right ) c_1+\sqrt {14} c_2\right ) e^{-\left (\left (1+\sqrt {14}\right ) x\right )}-\frac {7}{169} \\ z(x)\to \frac {x}{13}+\frac {1}{28} \left (5 \sqrt {14} c_1+\left (14-3 \sqrt {14}\right ) c_2\right ) e^{-\left (\left (1+\sqrt {14}\right ) x\right )}+\frac {1}{28} \left (\left (14+3 \sqrt {14}\right ) c_2-5 \sqrt {14} c_1\right ) e^{\left (\sqrt {14}-1\right ) x}-\frac {11}{169} \\ \end{align*}
Sympy. Time used: 0.488 (sec). Leaf size: 83
from sympy import * 
x = symbols("x") 
y = Function("y") 
z = Function("z") 
ode=[Eq(-x + 5*y(x) - 2*z(x) + Derivative(z(x), x),0),Eq(-x + 4*y(x) + z(x) + Derivative(y(x), x),0)] 
ics = {} 
dsolve(ode,func=[y(x),z(x)],ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {C_{1} \left (3 - \sqrt {14}\right ) e^{- x \left (1 - \sqrt {14}\right )}}{5} + \frac {C_{2} \left (3 + \sqrt {14}\right ) e^{- x \left (1 + \sqrt {14}\right )}}{5} + \frac {3 x}{13} - \frac {7}{169}, \ z{\left (x \right )} = C_{1} e^{- x \left (1 - \sqrt {14}\right )} + C_{2} e^{- x \left (1 + \sqrt {14}\right )} + \frac {x}{13} - \frac {11}{169}\right ] \]