Internal
problem
ID
[18625]
Book
:
A
short
course
on
differential
equations.
By
Donald
Francis
Campbell.
Maxmillan
company.
London.
1907
Section
:
Chapter
V.
Homogeneous
linear
differential
equations.
Exact
equations.
Exercises
at
page
69
Problem
number
:
13
Date
solved
:
Monday, March 31, 2025 at 05:46:56 PM
CAS
classification
:
[[_3rd_order, _fully, _exact, _linear]]
ode:=(x^3+x^2-3*x+1)*diff(diff(diff(y(x),x),x),x)+(9*x^2+6*x-9)*diff(diff(y(x),x),x)+(18*x+6)*diff(y(x),x)+6*y(x) = x^3; dsolve(ode,y(x), singsol=all);
ode=(x^3+x^2-3*x+1)*D[y[x],{x,3}]+(9*x^2+6*x-9)*D[y[x],{x,2}]+(18*x+6)*D[y[x],x]+6*y[x]==x^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3 + (18*x + 6)*Derivative(y(x), x) + (9*x**2 + 6*x - 9)*Derivative(y(x), (x, 2)) + (x**3 + x**2 - 3*x + 1)*Derivative(y(x), (x, 3)) + 6*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**3*Derivative(y(x), (x, 3)) + x**3 - 9*x**2*Derivative(y(x), (x, 2)) - x**2*Derivative(y(x), (x, 3)) - 6*x*Derivative(y(x), (x, 2)) + 3*x*Derivative(y(x), (x, 3)) - 6*y(x) + 9*Derivative(y(x), (x, 2)) - Derivative(y(x), (x, 3)))/(6*(3*x + 1)) cannot be solved by the factorable group method