Internal
problem
ID
[18616]
Book
:
A
short
course
on
differential
equations.
By
Donald
Francis
Campbell.
Maxmillan
company.
London.
1907
Section
:
Chapter
V.
Homogeneous
linear
differential
equations.
Exact
equations.
Exercises
at
page
69
Problem
number
:
4
Date
solved
:
Monday, March 31, 2025 at 05:46:40 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=x^3*diff(diff(diff(y(x),x),x),x)+2*x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+4*y(x) = ln(x); dsolve(ode,y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]+2*x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+4*y[x]==Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) + 2*x**2*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x) + 4*y(x) - log(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)