9.1.3 problem problem 40

Internal problem ID [930]
Book : Differential equations and linear algebra, 4th ed., Edwards and Penney
Section : Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear Equations. Page 288
Problem number : problem 40
Date solved : Saturday, March 29, 2025 at 10:34:55 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=x \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 12
ode:=x^2*diff(diff(y(x),x),x)-x*(x+2)*diff(y(x),x)+(x+2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x \left ({\mathrm e}^{x} c_2 +c_1 \right ) \]
Mathematica. Time used: 0.02 (sec). Leaf size: 16
ode=x^2*D[y[x],{x,2}]-x*(x+2)*D[y[x],x]+(x+2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x \left (c_2 e^x+c_1\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - x*(x + 2)*Derivative(y(x), x) + (x + 2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False