Internal
problem
ID
[18565]
Book
:
A
short
course
on
differential
equations.
By
Donald
Francis
Campbell.
Maxmillan
company.
London.
1907
Section
:
Chapter
III.
Ordinary
differential
equations
of
the
first
order
and
first
degree.
Exercises
at
page
33
Problem
number
:
18
Date
solved
:
Monday, March 31, 2025 at 05:43:01 PM
CAS
classification
:
[_exact, _rational]
ode:=x^3-3*x^2*y(x)+5*x*y(x)^2-7*y(x)^3+(y(x)^4+2*y(x)^2-x^3+5*x^2*y(x)-21*x*y(x)^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^3-3*x^2*y[x]+5*x*y[x]^2-7*y[x]^3) +(y[x]^4+2*y[x]^2-x^3+5*x^2*y[x]-21*x*y[x]^2)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3 - 3*x**2*y(x) + 5*x*y(x)**2 + (-x**3 + 5*x**2*y(x) - 21*x*y(x)**2 + y(x)**4 + 2*y(x)**2)*Derivative(y(x), x) - 7*y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out