Internal
problem
ID
[18547]
Book
:
A
short
course
on
differential
equations.
By
Donald
Francis
Campbell.
Maxmillan
company.
London.
1907
Section
:
Chapter
II.
Change
of
variable.
Exercises
at
page
20
Problem
number
:
10
Date
solved
:
Monday, March 31, 2025 at 05:42:01 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=diff(diff(v(x),x),x)+2*x/(x^2+1)*diff(v(x),x)+v(x)/(x^2+1)^2 = 0; dsolve(ode,v(x), singsol=all);
ode=D[v[x],{x,2}]+2*x/(1+x^2)*D[v[x],x]+v[x]/(1+x^2)^2==0; ic={}; DSolve[{ode,ic},v[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") v = Function("v") ode = Eq(2*x*Derivative(v(x), x)/(x**2 + 1) + Derivative(v(x), (x, 2)) + v(x)/(x**2 + 1)**2,0) ics = {} dsolve(ode,func=v(x),ics=ics)
False