78.24.3 problem 4

Internal problem ID [18389]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 9. Laplace transforms. Section 51. Derivatives and Integrals of Laplace Transforms. Problems at page 467
Problem number : 4
Date solved : Monday, March 31, 2025 at 05:27:08 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} y^{\prime \prime }+x^{2} y&=0 \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=y_{0}\\ y^{\prime }\left (0\right )&=\operatorname {yd}_{0} \end{align*}

Maple. Time used: 0.397 (sec). Leaf size: 130
ode:=diff(diff(y(x),x),x)+x^2*y(x) = 0; 
ic:=y(0) = y__0, D(y)(0) = yd__0; 
dsolve([ode,ic],y(x),method='laplace');
 
\[ y = \frac {15 \pi ^{{3}/{2}} \operatorname {yd}_{0} \mathcal {L}^{-1}\left (\frac {\operatorname {StruveH}\left (\frac {3}{4}, \frac {\textit {\_s1}^{2}}{2}\right )}{\textit {\_s1}^{{3}/{2}}}, \textit {\_s1} , x\right )+5 \Gamma \left (\frac {3}{4}\right ) \left (\sqrt {2}\, \sqrt {\pi }\, y_{0} \Gamma \left (\frac {3}{4}\right )+4 c_1 \right ) \mathcal {L}^{-1}\left (\sqrt {\textit {\_s1}}\, \operatorname {BesselY}\left (\frac {1}{4}, \frac {\textit {\_s1}^{2}}{2}\right ), \textit {\_s1} , x\right )+10 \sqrt {x}\, \sqrt {2}\, y_{0} \operatorname {BesselJ}\left (-\frac {1}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}-5 \pi ^{{3}/{2}} \operatorname {yd}_{0} \mathcal {L}^{-1}\left (\sqrt {\textit {\_s1}}\, \operatorname {StruveH}\left (\frac {7}{4}, \frac {\textit {\_s1}^{2}}{2}\right ), \textit {\_s1} , x\right )+4 \delta \left (2, x\right ) \operatorname {yd}_{0} \Gamma \left (\frac {3}{4}\right )+20 c_2 \mathcal {L}^{-1}\left (\sqrt {\textit {\_s1}}\, \operatorname {BesselJ}\left (\frac {1}{4}, \frac {\textit {\_s1}^{2}}{2}\right ), \textit {\_s1} , x\right ) \Gamma \left (\frac {3}{4}\right )}{20 \Gamma \left (\frac {3}{4}\right )} \]
Mathematica. Time used: 0.021 (sec). Leaf size: 83
ode=D[y[x],{x,2}]+x^2*y[x]==0; 
ic={y[0]==y0,Derivative[1][y][0] == yd0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\operatorname {ParabolicCylinderD}\left (-\frac {1}{2},(-1+i) x\right ) \left (\sqrt {2} \text {yd0} \operatorname {Gamma}\left (\frac {1}{4}\right )+(2+2 i) \text {y0} \operatorname {Gamma}\left (\frac {3}{4}\right )\right )-\operatorname {ParabolicCylinderD}\left (-\frac {1}{2},(1+i) x\right ) \left (\sqrt {2} \text {yd0} \operatorname {Gamma}\left (\frac {1}{4}\right )-(2-2 i) \text {y0} \operatorname {Gamma}\left (\frac {3}{4}\right )\right )}{2\ 2^{3/4} \sqrt {\pi }} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): y__0, Subs(Derivative(y(x), x), x, 0): yd__0} 
dsolve(ode,func=y(x),ics=ics)
 
False