Internal
problem
ID
[906]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
5.5,
Nonhomogeneous
equations
and
undetermined
coefficients
Page
351
Problem
number
:
61
Date
solved
:
Saturday, March 29, 2025 at 10:34:06 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+y(x) = ln(x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+y[x]==Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + y(x) - log(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)