78.15.3 problem 3

Internal problem ID [18288]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 3. Second order linear equations. Section 22. Higher Order Linear Equations. Coupled Harmonic Oscillators. Problems at page 160
Problem number : 3
Date solved : Monday, March 31, 2025 at 05:24:56 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 35
ode:=diff(diff(diff(y(x),x),x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{x}+c_2 \,{\mathrm e}^{-\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right )+c_3 \,{\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 52
ode=D[y[x],{x,3}]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-x/2} \left (c_1 e^{3 x/2}+c_2 \cos \left (\frac {\sqrt {3} x}{2}\right )+c_3 \sin \left (\frac {\sqrt {3} x}{2}\right )\right ) \]
Sympy. Time used: 0.122 (sec). Leaf size: 36
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{x} + \left (C_{1} \sin {\left (\frac {\sqrt {3} x}{2} \right )} + C_{2} \cos {\left (\frac {\sqrt {3} x}{2} \right )}\right ) e^{- \frac {x}{2}} \]