Internal
problem
ID
[18284]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
3.
Second
order
linear
equations.
Section
19.
The
Method
of
Variation
of
Parameters.
Problems
at
page
135
Problem
number
:
6
(d)
Date
solved
:
Monday, March 31, 2025 at 05:24:49 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x*diff(diff(y(x),x),x)-(1+x)*diff(y(x),x)+y(x) = x^2*exp(2*x); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],{x,2}]-(1+x)*D[y[x],x]+y[x]==x^2*Exp[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*exp(2*x) + x*Derivative(y(x), (x, 2)) - (x + 1)*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-x**2*exp(2*x) + x*Derivative(y(x), (x, 2)) + y(x))/(x + 1) cannot be solved by the factorable group method