Internal
problem
ID
[18281]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
3.
Second
order
linear
equations.
Section
19.
The
Method
of
Variation
of
Parameters.
Problems
at
page
135
Problem
number
:
6
(a)
Date
solved
:
Monday, March 31, 2025 at 05:24:43 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x^2-1)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = (x^2-1)^2; dsolve(ode,y(x), singsol=all);
ode=(x^2-1)*D[y[x],{x,2}]-2*x*D[y[x],x] +2*y[x]==(x^2-1)^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*Derivative(y(x), x) - (x**2 - 1)**2 + (x**2 - 1)*Derivative(y(x), (x, 2)) + 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*(-x**2 + Derivative(y(x), (x, 2)) + 2) + 2*y(x) - Derivative(y(x), (x, 2)) - 1)/(2*x) cannot be solved by the factorable group method