Internal
problem
ID
[18190]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
3.
Second
order
linear
equations.
Section
14.
Introduction.
Problems
at
page
112
Problem
number
:
8
Date
solved
:
Monday, March 31, 2025 at 05:22:18 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+(x^2+6)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}] -4*x*D[y[x],x]+(x^2+6)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x) + (x**2 + 6)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)