Internal
problem
ID
[18166]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Miscellaneous
Problems
for
Chapter
2.
Problems
at
page
99
Problem
number
:
39
Date
solved
:
Monday, March 31, 2025 at 05:20:47 PM
CAS
classification
:
[_linear]
ode:=exp(x^2*y(x))*(1+2*x^2*y(x))+x^3*exp(x^2*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=Exp[x^2*y[x]]*(1+2*x^2*y[x])+ x^3*Exp[x^2*y[x]] * D[y[x],x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*exp(x**2*y(x))*Derivative(y(x), x) + (2*x**2*y(x) + 1)*exp(x**2*y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)