78.8.37 problem 37

Internal problem ID [18164]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 2. First order equations. Miscellaneous Problems for Chapter 2. Problems at page 99
Problem number : 37
Date solved : Monday, March 31, 2025 at 05:20:40 PM
CAS classification : [_linear]

\begin{align*} x \left (x^{2}+1\right ) y^{\prime }+2 y&=\left (x^{2}+1\right )^{3} \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 21
ode:=x*(x^2+1)*diff(y(x),x)+2*y(x) = (x^2+1)^3; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (\frac {\left (x^{2}+1\right )^{2}}{4}+c_1 \right ) \left (1+\frac {1}{x^{2}}\right ) \]
Mathematica. Time used: 0.046 (sec). Leaf size: 30
ode=x*(x^2+1)*D[y[x],x] +2*y[x]== (x^2+1)^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\left (x^2+1\right ) \left (x^4+2 x^2+4 c_1\right )}{4 x^2} \]
Sympy. Time used: 0.376 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(x**2 + 1)*Derivative(y(x), x) - (x**2 + 1)**3 + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {C_{1}}{x^{2}} + \frac {x^{4}}{4} + \frac {3 x^{2}}{4} + \frac {1}{2} \]