78.8.10 problem 10

Internal problem ID [18137]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 2. First order equations. Miscellaneous Problems for Chapter 2. Problems at page 99
Problem number : 10
Date solved : Monday, March 31, 2025 at 05:13:17 PM
CAS classification : [_exact, [_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

\begin{align*} \left ({\mathrm e}^{x}-3 x^{2} y^{2}\right ) y^{\prime }+y \,{\mathrm e}^{x}&=2 x y^{3} \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 274
ode:=(exp(x)-3*x^2*y(x)^2)*diff(y(x),x)+y(x)*exp(x) = 2*x*y(x)^3; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (108 c_1 x +12 \sqrt {81 c_1^{2} x^{2}-12 \,{\mathrm e}^{3 x}}\right )^{{2}/{3}}+12 \,{\mathrm e}^{x}}{6 \left (108 c_1 x +12 \sqrt {81 c_1^{2} x^{2}-12 \,{\mathrm e}^{3 x}}\right )^{{1}/{3}} x} \\ y &= \frac {-i \left (108 c_1 x +12 \sqrt {81 c_1^{2} x^{2}-12 \,{\mathrm e}^{3 x}}\right )^{{2}/{3}} \sqrt {3}+12 i {\mathrm e}^{x} \sqrt {3}-\left (108 c_1 x +12 \sqrt {81 c_1^{2} x^{2}-12 \,{\mathrm e}^{3 x}}\right )^{{2}/{3}}-12 \,{\mathrm e}^{x}}{12 \left (108 c_1 x +12 \sqrt {81 c_1^{2} x^{2}-12 \,{\mathrm e}^{3 x}}\right )^{{1}/{3}} x} \\ y &= -\frac {-i \left (108 c_1 x +12 \sqrt {81 c_1^{2} x^{2}-12 \,{\mathrm e}^{3 x}}\right )^{{2}/{3}} \sqrt {3}+12 i {\mathrm e}^{x} \sqrt {3}+\left (108 c_1 x +12 \sqrt {81 c_1^{2} x^{2}-12 \,{\mathrm e}^{3 x}}\right )^{{2}/{3}}+12 \,{\mathrm e}^{x}}{12 \left (108 c_1 x +12 \sqrt {81 c_1^{2} x^{2}-12 \,{\mathrm e}^{3 x}}\right )^{{1}/{3}} x} \\ \end{align*}
Mathematica. Time used: 60.255 (sec). Leaf size: 364
ode=(Exp[x]-3*x^2*y[x]^2)*D[y[x],x]+y[x]*Exp[x]==2*x*y[x]^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {2 \sqrt [3]{3} e^x x^2+\sqrt [3]{2} \left (9 c_1 x^4+\sqrt {-12 e^{3 x} x^6+81 c_1{}^2 x^8}\right ){}^{2/3}}{6^{2/3} x^2 \sqrt [3]{9 c_1 x^4+\sqrt {-12 e^{3 x} x^6+81 c_1{}^2 x^8}}} \\ y(x)\to \frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{9 c_1 x^4+\sqrt {-12 e^{3 x} x^6+81 c_1{}^2 x^8}}}{2 \sqrt [3]{2} 3^{2/3} x^2}-\frac {\left (\sqrt {3}+3 i\right ) e^x}{2^{2/3} 3^{5/6} \sqrt [3]{9 c_1 x^4+\sqrt {-12 e^{3 x} x^6+81 c_1{}^2 x^8}}} \\ y(x)\to \frac {\left (-1-i \sqrt {3}\right ) \sqrt [3]{9 c_1 x^4+\sqrt {-12 e^{3 x} x^6+81 c_1{}^2 x^8}}}{2 \sqrt [3]{2} 3^{2/3} x^2}-\frac {\left (\sqrt {3}-3 i\right ) e^x}{2^{2/3} 3^{5/6} \sqrt [3]{9 c_1 x^4+\sqrt {-12 e^{3 x} x^6+81 c_1{}^2 x^8}}} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*y(x)**3 + (-3*x**2*y(x)**2 + exp(x))*Derivative(y(x), x) + y(x)*exp(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out