Internal
problem
ID
[18119]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Section
11
(Reduction
of
order).
Problems
at
page
87
Problem
number
:
1
(d)
Date
solved
:
Monday, March 31, 2025 at 05:12:15 PM
CAS
classification
:
[[_2nd_order, _missing_y]]
ode:=x^2*diff(diff(y(x),x),x) = 2*x*diff(y(x),x)+diff(y(x),x)^2; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]==2*x*D[y[x],x]+D[y[x],x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), x) - Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)