Internal
problem
ID
[18095]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Section
9
(Integrating
Factors).
Problems
at
page
80
Problem
number
:
4
(L)
Date
solved
:
Monday, March 31, 2025 at 05:09:57 PM
CAS
classification
:
[[_homogeneous, `class D`], _rational, _Bernoulli]
ode:=2*x*y(x)^2-y(x)+x*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x*y[x]^2-y[x])+x*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*y(x)**2 + x*Derivative(y(x), x) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)