78.5.23 problem 4 (L)

Internal problem ID [18095]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 2. First order equations. Section 9 (Integrating Factors). Problems at page 80
Problem number : 4 (L)
Date solved : Monday, March 31, 2025 at 05:09:57 PM
CAS classification : [[_homogeneous, `class D`], _rational, _Bernoulli]

\begin{align*} 2 x y^{2}-y+x y^{\prime }&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 13
ode:=2*x*y(x)^2-y(x)+x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x}{x^{2}+c_1} \]
Mathematica. Time used: 0.14 (sec). Leaf size: 20
ode=(2*x*y[x]^2-y[x])+x*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {x}{x^2+c_1} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.173 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x)**2 + x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x}{C_{1} + x^{2}} \]