Internal
problem
ID
[18093]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Section
9
(Integrating
Factors).
Problems
at
page
80
Problem
number
:
4
(j)
Date
solved
:
Monday, March 31, 2025 at 05:09:50 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
ode:=-y(x)+x*diff(y(x),x) = x^2*y(x)^4*(x*diff(y(x),x)+y(x)); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]-y[x] == x^2*y[x]^4*(x*D[y[x],x]+y[x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*(x*Derivative(y(x), x) + y(x))*y(x)**4 + x*Derivative(y(x), x) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out