Internal
problem
ID
[18086]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Section
9
(Integrating
Factors).
Problems
at
page
80
Problem
number
:
4
(c)
Date
solved
:
Monday, March 31, 2025 at 05:07:36 PM
CAS
classification
:
[[_homogeneous, `class D`], _rational, _Riccati]
ode:=x*diff(y(x),x) = x^5+x^3*y(x)^2+y(x); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x] == x^5+x^3*y[x]^2+y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**5 - x**3*y(x)**2 + x*Derivative(y(x), x) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)