Internal
problem
ID
[18083]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Section
9
(Integrating
Factors).
Problems
at
page
80
Problem
number
:
2
(k)
Date
solved
:
Monday, March 31, 2025 at 05:07:27 PM
CAS
classification
:
[_rational, _Bernoulli]
ode:=x^3+x*y(x)^3+3*y(x)^2*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( x^2+x*y[x]^3 )+( 3*y[x]^2 )*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3 + x*y(x)**3 + 3*y(x)**2*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)