Internal
problem
ID
[18069]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Section
8
(Exact
Equations).
Problems
at
page
72
Problem
number
:
18
Date
solved
:
Monday, March 31, 2025 at 05:03:51 PM
CAS
classification
:
[_separable]
ode:=x/(x^2+y(x)^2)^(3/2)+y(x)/(x^2+y(x)^2)^(3/2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x/(x^2+y[x]^2)^(3/2))+( y[x]/(x^2+y[x]^2)^(3/2) )*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x/(x**2 + y(x)**2)**(3/2) + y(x)*Derivative(y(x), x)/(x**2 + y(x)**2)**(3/2),0) ics = {} dsolve(ode,func=y(x),ics=ics)