Internal
problem
ID
[18057]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Section
8
(Exact
Equations).
Problems
at
page
72
Problem
number
:
6
Date
solved
:
Monday, March 31, 2025 at 05:01:05 PM
CAS
classification
:
[_separable]
ode:=cos(x)*cos(y(x))^2+2*sin(x)*sin(y(x))*cos(y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(Cos[x]*Cos[y[x]]^2)+(2*Sin[x]*Sin[y[x]]*Cos[y[x]])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*sin(x)*sin(y(x))*cos(y(x))*Derivative(y(x), x) + cos(x)*cos(y(x))**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)