78.1.20 problem 2 (f)

Internal problem ID [18004]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 1. The Nature of Differential Equations. Separable Equations. Section 2. Problems at page 9
Problem number : 2 (f)
Date solved : Monday, March 31, 2025 at 04:56:12 PM
CAS classification : [_quadrature]

\begin{align*} \left (x^{2}+1\right ) y^{\prime }&=x \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 14
ode:=(x^2+1)*diff(y(x),x) = x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\ln \left (x^{2}+1\right )}{2}+c_1 \]
Mathematica. Time used: 0.004 (sec). Leaf size: 18
ode=(1+x^2)*D[y[x],x]==x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} \log \left (x^2+1\right )+c_1 \]
Sympy. Time used: 0.154 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + (x**2 + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {\log {\left (x^{2} + 1 \right )}}{2} \]