78.1.8 problem 1 (i)

Internal problem ID [17992]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 1. The Nature of Differential Equations. Separable Equations. Section 2. Problems at page 9
Problem number : 1 (i)
Date solved : Monday, March 31, 2025 at 04:54:10 PM
CAS classification : [[_homogeneous, `class D`], _rational, _Riccati]

\begin{align*} x y^{\prime }&=y+x^{2}+y^{2} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 10
ode:=x*diff(y(x),x) = y(x)+x^2+y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \tan \left (x +c_1 \right ) x \]
Mathematica. Time used: 0.186 (sec). Leaf size: 12
ode=x*D[y[x],x]==y[x]+x^2+y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to x \tan (x+c_1) \]
Sympy. Time used: 0.333 (sec). Leaf size: 24
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 + x*Derivative(y(x), x) - y(x)**2 - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x \left (i C_{1} + i e^{2 i x}\right )}{C_{1} - e^{2 i x}} \]