78.1.6 problem 1 (f)

Internal problem ID [17990]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 1. The Nature of Differential Equations. Separable Equations. Section 2. Problems at page 9
Problem number : 1 (f)
Date solved : Monday, March 31, 2025 at 04:53:21 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-4 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)-4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-2 x}+c_2 \,{\mathrm e}^{2 x} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 22
ode=D[y[x],{x,2}]-4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-2 x} \left (c_1 e^{4 x}+c_2\right ) \]
Sympy. Time used: 0.055 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 2 x} + C_{2} e^{2 x} \]