77.1.109 problem 137 (page 198)

Internal problem ID [17928]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 137 (page 198)
Date solved : Monday, March 31, 2025 at 04:51:40 PM
CAS classification : [[_3rd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime \prime }-y^{\prime \prime }+x y^{\prime }-y&=0 \end{align*}

Maple. Time used: 0.007 (sec). Leaf size: 16
ode:=x*diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)+x*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 x +c_2 \cos \left (x \right )+c_3 \sin \left (x \right ) \]
Mathematica. Time used: 0.068 (sec). Leaf size: 21
ode=x*D[y[x],{x,3}]-D[y[x],{x,2}]+x*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 x+c_3 \cos (x)-c_2 \sin (x) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + x*Derivative(y(x), (x, 3)) - y(x) - Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (-x*Derivative(y(x), (x, 3)) + y(x) + Derivative(y(x), (x, 2)))/x cannot be solved by the factorable group method