77.1.14 problem 28 (page 32)

Internal problem ID [17833]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 28 (page 32)
Date solved : Monday, March 31, 2025 at 04:35:10 PM
CAS classification : [[_homogeneous, `class C`], _rational]

\begin{align*} y^{\prime }&=\frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \end{align*}

Maple. Time used: 0.009 (sec). Leaf size: 26
ode:=diff(y(x),x) = 2*(2+y(x))^2/(-1+x+y(x))^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -2+\left (-x +3\right ) \tan \left (\operatorname {RootOf}\left (-2 \textit {\_Z} +\ln \left (\tan \left (\textit {\_Z} \right )\right )+\ln \left (x -3\right )+c_1 \right )\right ) \]
Mathematica. Time used: 0.157 (sec). Leaf size: 27
ode=D[y[x],x]==2* ((y[x]+2)/(x+y[x]-1))^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [2 \arctan \left (\frac {3-x}{y(x)+2}\right )+\log (y(x)+2)=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*(y(x) + 2)**2/(x + y(x) - 1)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out