Internal
problem
ID
[17796]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
6.
Systems
of
First
Order
Linear
Equations.
Section
6.5
(Fundamental
Matrices
and
the
Exponential
of
a
Matrix).
Problems
at
page
430
Problem
number
:
22
Date
solved
:
Monday, March 31, 2025 at 04:27:53 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = -k__1*x__1(t), diff(x__2(t),t) = k__1*x__1(t)-k__2*x__2(t), diff(x__3(t),t) = k__2*x__2(t)]; ic:=x__1(0) = m__0x__2(0) = 0x__3(0) = 0; dsolve([ode,ic]);
ode={D[x1[t],t]==-k1*x1[t]-0*x2[t]+0*x3[t],D[x2[t],t]==k1*x1[t]-k2*x2[t]-0*x3[t],D[x3[t],t]==0*x1[t]+k2*x2[t]-0*x3[t]}; ic={x1[0]==m0,x2[0]==0,x3[0]==0}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") k__1 = symbols("k__1") k__2 = symbols("k__2") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(k__1*x__1(t) + Derivative(x__1(t), t),0),Eq(-k__1*x__1(t) + k__2*x__2(t) + Derivative(x__2(t), t),0),Eq(-k__2*x__2(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)