76.27.2 problem 2

Internal problem ID [17777]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 6. Systems of First Order Linear Equations. Section 6.5 (Fundamental Matrices and the Exponential of a Matrix). Problems at page 430
Problem number : 2
Date solved : Monday, March 31, 2025 at 04:27:28 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=-3 x_{1} \left (t \right )+2 x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=\frac {x_{1} \left (t \right )}{2}-3 x_{2} \left (t \right ) \end{align*}

Maple. Time used: 0.117 (sec). Leaf size: 35
ode:=[diff(x__1(t),t) = -3*x__1(t)+2*x__2(t), diff(x__2(t),t) = 1/2*x__1(t)-3*x__2(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= c_1 \,{\mathrm e}^{-2 t}+c_2 \,{\mathrm e}^{-4 t} \\ x_{2} \left (t \right ) &= \frac {c_1 \,{\mathrm e}^{-2 t}}{2}-\frac {c_2 \,{\mathrm e}^{-4 t}}{2} \\ \end{align*}
Mathematica. Time used: 0.003 (sec). Leaf size: 70
ode={D[x1[t],t]==-3*x1[t]+2*x2[t],D[x2[t],t]==1/2*x1[t]-3*x2[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to \frac {1}{2} e^{-4 t} \left (c_1 \left (e^{2 t}+1\right )+2 c_2 \left (e^{2 t}-1\right )\right ) \\ \text {x2}(t)\to \frac {1}{4} e^{-4 t} \left (c_1 \left (e^{2 t}-1\right )+2 c_2 \left (e^{2 t}+1\right )\right ) \\ \end{align*}
Sympy. Time used: 0.092 (sec). Leaf size: 34
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(3*x__1(t) - 2*x__2(t) + Derivative(x__1(t), t),0),Eq(-x__1(t)/2 + 3*x__2(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = - 2 C_{1} e^{- 4 t} + 2 C_{2} e^{- 2 t}, \ x^{2}{\left (t \right )} = C_{1} e^{- 4 t} + C_{2} e^{- 2 t}\right ] \]