76.26.9 problem 9
Internal
problem
ID
[17770]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
6.
Systems
of
First
Order
Linear
Equations.
Section
6.4
(Nondefective
Matrices
with
Complex
Eigenvalues).
Problems
at
page
419
Problem
number
:
9
Date
solved
:
Monday, March 31, 2025 at 04:27:11 PM
CAS
classification
:
system_of_ODEs
\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=\frac {3 x_{1} \left (t \right )}{4}+\frac {29 x_{2} \left (t \right )}{4}-\frac {11 x_{3} \left (t \right )}{2}\\ \frac {d}{d t}x_{2} \left (t \right )&=-\frac {3 x_{1} \left (t \right )}{4}+\frac {3 x_{2} \left (t \right )}{4}-\frac {5 x_{3} \left (t \right )}{2}\\ \frac {d}{d t}x_{3} \left (t \right )&=\frac {5 x_{1} \left (t \right )}{4}+\frac {11 x_{2} \left (t \right )}{4}-\frac {5 x_{3} \left (t \right )}{2} \end{align*}
✓ Maple. Time used: 0.151 (sec). Leaf size: 101
ode:=[diff(x__1(t),t) = 3/4*x__1(t)+29/4*x__2(t)-11/2*x__3(t), diff(x__2(t),t) = -3/4*x__1(t)+3/4*x__2(t)-5/2*x__3(t), diff(x__3(t),t) = 5/4*x__1(t)+11/4*x__2(t)-5/2*x__3(t)];
dsolve(ode);
\begin{align*}
x_{1} \left (t \right ) &= c_1 \,{\mathrm e}^{-t}+c_2 \sin \left (4 t \right )+c_3 \cos \left (4 t \right ) \\
x_{2} \left (t \right ) &= -c_1 \,{\mathrm e}^{-t}+\frac {c_2 \sin \left (4 t \right )}{5}+\frac {c_3 \cos \left (4 t \right )}{5}+\frac {2 c_2 \cos \left (4 t \right )}{5}-\frac {2 c_3 \sin \left (4 t \right )}{5} \\
x_{3} \left (t \right ) &= -c_1 \,{\mathrm e}^{-t}-\frac {c_2 \cos \left (4 t \right )}{5}+\frac {c_3 \sin \left (4 t \right )}{5}+\frac {2 c_2 \sin \left (4 t \right )}{5}+\frac {2 c_3 \cos \left (4 t \right )}{5} \\
\end{align*}
✓ Mathematica. Time used: 0.01 (sec). Leaf size: 186
ode={D[x1[t],t]==3/4*x1[t]+29/4*x2[t]-11/2*x3[t],D[x2[t],t]==-3/4*x1[t]+3/4*x2[t]-5/2*x3[t],D[x3[t],t]==5/4*x1[t]+11/4*x2[t]-5/2*x3[t]};
ic={};
DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
\begin{align*}
\text {x1}(t)\to \frac {1}{4} e^{-t} \left ((3 c_1+c_2+2 c_3) e^t \cos (4 t)+(c_1+7 c_2-6 c_3) e^t \sin (4 t)+c_1-c_2-2 c_3\right ) \\
\text {x2}(t)\to \frac {1}{4} e^{-t} \left ((c_1+3 c_2-2 c_3) e^t \cos (4 t)-(c_1-c_2+2 c_3) e^t \sin (4 t)-c_1+c_2+2 c_3\right ) \\
\text {x3}(t)\to \frac {1}{4} e^{-t} \left ((c_1-c_2+2 c_3) e^t \cos (4 t)+(c_1+3 c_2-2 c_3) e^t \sin (4 t)-c_1+c_2+2 c_3\right ) \\
\end{align*}
✓ Sympy. Time used: 0.169 (sec). Leaf size: 70
from sympy import *
t = symbols("t")
x__1 = Function("x__1")
x__2 = Function("x__2")
x__3 = Function("x__3")
ode=[Eq(-3*x__1(t)/4 - 29*x__2(t)/4 + 11*x__3(t)/2 + Derivative(x__1(t), t),0),Eq(3*x__1(t)/4 - 3*x__2(t)/4 + 5*x__3(t)/2 + Derivative(x__2(t), t),0),Eq(-5*x__1(t)/4 - 11*x__2(t)/4 + 5*x__3(t)/2 + Derivative(x__3(t), t),0)]
ics = {}
dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)
\[
\left [ x^{1}{\left (t \right )} = - C_{1} e^{- t} - \left (C_{2} - 2 C_{3}\right ) \cos {\left (4 t \right )} - \left (2 C_{2} + C_{3}\right ) \sin {\left (4 t \right )}, \ x^{2}{\left (t \right )} = C_{1} e^{- t} - C_{2} \cos {\left (4 t \right )} - C_{3} \sin {\left (4 t \right )}, \ x^{3}{\left (t \right )} = C_{1} e^{- t} - C_{2} \sin {\left (4 t \right )} + C_{3} \cos {\left (4 t \right )}\right ]
\]