Internal
problem
ID
[17767]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
6.
Systems
of
First
Order
Linear
Equations.
Section
6.4
(Nondefective
Matrices
with
Complex
Eigenvalues).
Problems
at
page
419
Problem
number
:
6
Date
solved
:
Monday, March 31, 2025 at 04:27:06 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = 4/3*x__1(t)+4/3*x__2(t)-11/3*x__3(t), diff(x__2(t),t) = -16/3*x__1(t)-1/3*x__2(t)+14/3*x__3(t), diff(x__3(t),t) = 3*x__1(t)-2*x__2(t)-2*x__3(t)]; dsolve(ode);
ode={D[x1[t],t]==4/3*x1[t]+4/3*x2[t]-11/3*x3[t],D[x2[t],t]==-16/3*x1[t]-1/3*x2[t]+14/3*x3[t],D[x3[t],t]==3*x1[t]-2*x2[t]-2*x3[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(-4*x__1(t)/3 - 4*x__2(t)/3 + 11*x__3(t)/3 + Derivative(x__1(t), t),0),Eq(16*x__1(t)/3 + x__2(t)/3 - 14*x__3(t)/3 + Derivative(x__2(t), t),0),Eq(-3*x__1(t) + 2*x__2(t) + 2*x__3(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)