76.26.4 problem 4

Internal problem ID [17765]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 6. Systems of First Order Linear Equations. Section 6.4 (Nondefective Matrices with Complex Eigenvalues). Problems at page 419
Problem number : 4
Date solved : Monday, March 31, 2025 at 04:27:02 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=-4 x_{1} \left (t \right )+2 x_{2} \left (t \right )-x_{3} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=-6 x_{1} \left (t \right )-3 x_{3} \left (t \right )\\ \frac {d}{d t}x_{3} \left (t \right )&=\frac {8 x_{2} \left (t \right )}{3}-2 x_{3} \left (t \right ) \end{align*}

Maple. Time used: 0.304 (sec). Leaf size: 96
ode:=[diff(x__1(t),t) = -4*x__1(t)+2*x__2(t)-x__3(t), diff(x__2(t),t) = -6*x__1(t)-3*x__3(t), diff(x__3(t),t) = 8/3*x__2(t)-2*x__3(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= \frac {{\mathrm e}^{-2 t} \left (2 \sin \left (4 t \right ) c_2 +2 c_3 \sin \left (4 t \right )-2 c_2 \cos \left (4 t \right )+2 \cos \left (4 t \right ) c_3 -3 c_1 -2 c_2 \right )}{6} \\ x_{2} \left (t \right ) &= {\mathrm e}^{-2 t} \left (\sin \left (4 t \right ) c_2 +\cos \left (4 t \right ) c_3 \right ) \\ x_{3} \left (t \right ) &= \frac {{\mathrm e}^{-2 t} \left (2 c_3 \sin \left (4 t \right )-2 c_2 \cos \left (4 t \right )+3 c_1 +2 c_2 \right )}{3} \\ \end{align*}
Mathematica. Time used: 0.009 (sec). Leaf size: 152
ode={D[x1[t],t]==-4*x1[t]+2*x2[t]-1*x3[t],D[x2[t],t]==-6*x1[t]+0*x2[t]-3*x3[t],D[x3[t],t]==0*x1[t]+8/3*x2[t]-2*x3[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to \frac {1}{12} e^{-2 t} ((6 c_1+2 c_2+3 c_3) \cos (4 t)-3 (2 c_1-2 c_2+c_3) \sin (4 t)+6 c_1-2 c_2-3 c_3) \\ \text {x2}(t)\to \frac {1}{4} e^{-2 t} (4 c_2 \cos (4 t)+(-6 c_1+2 c_2-3 c_3) \sin (4 t)) \\ \text {x3}(t)\to \frac {1}{6} e^{-2 t} ((6 c_1-2 c_2+3 c_3) \cos (4 t)+4 c_2 \sin (4 t)-6 c_1+2 c_2+3 c_3) \\ \end{align*}
Sympy. Time used: 0.169 (sec). Leaf size: 110
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
x__3 = Function("x__3") 
ode=[Eq(4*x__1(t) - 2*x__2(t) + x__3(t) + Derivative(x__1(t), t),0),Eq(6*x__1(t) + 3*x__3(t) + Derivative(x__2(t), t),0),Eq(-8*x__2(t)/3 + 2*x__3(t) + Derivative(x__3(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = - \frac {C_{1} e^{- 2 t}}{2} + \left (\frac {C_{2}}{2} - \frac {C_{3}}{2}\right ) e^{- 2 t} \cos {\left (4 t \right )} - \left (\frac {C_{2}}{2} + \frac {C_{3}}{2}\right ) e^{- 2 t} \sin {\left (4 t \right )}, \ x^{2}{\left (t \right )} = - \frac {3 C_{2} e^{- 2 t} \sin {\left (4 t \right )}}{2} - \frac {3 C_{3} e^{- 2 t} \cos {\left (4 t \right )}}{2}, \ x^{3}{\left (t \right )} = C_{1} e^{- 2 t} + C_{2} e^{- 2 t} \cos {\left (4 t \right )} - C_{3} e^{- 2 t} \sin {\left (4 t \right )}\right ] \]