76.24.1 problem 1

Internal problem ID [17729]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 6. Systems of First Order Linear Equations. Section 6.2 (Basic Theory of First Order Linear Systems). Problems at page 398
Problem number : 1
Date solved : Monday, March 31, 2025 at 04:26:07 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }+5 y^{\prime \prime \prime }+4 y&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 188
ode:=diff(diff(diff(diff(y(t),t),t),t),t)+5*diff(diff(diff(y(t),t),t),t)+4*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-t}+c_2 \,{\mathrm e}^{-\frac {4 t \left (\frac {\left (190+6 \sqrt {393}\right )^{{2}/{3}}}{4}+\left (190+6 \sqrt {393}\right )^{{1}/{3}}+7\right )}{3 \left (190+6 \sqrt {393}\right )^{{1}/{3}}}}+c_3 \,{\mathrm e}^{\frac {\left (28+\left (190+6 \sqrt {393}\right )^{{2}/{3}}-8 \left (190+6 \sqrt {393}\right )^{{1}/{3}}\right ) t}{6 \left (190+6 \sqrt {393}\right )^{{1}/{3}}}} \sin \left (\frac {\sqrt {3}\, \left (\left (190+6 \sqrt {3}\, \sqrt {131}\right )^{{2}/{3}}-28\right ) t}{6 \left (190+6 \sqrt {3}\, \sqrt {131}\right )^{{1}/{3}}}\right )+c_4 \,{\mathrm e}^{\frac {\left (28+\left (190+6 \sqrt {393}\right )^{{2}/{3}}-8 \left (190+6 \sqrt {393}\right )^{{1}/{3}}\right ) t}{6 \left (190+6 \sqrt {393}\right )^{{1}/{3}}}} \cos \left (\frac {\sqrt {3}\, \left (\left (190+6 \sqrt {3}\, \sqrt {131}\right )^{{2}/{3}}-28\right ) t}{6 \left (190+6 \sqrt {3}\, \sqrt {131}\right )^{{1}/{3}}}\right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 95
ode=D[y[t],{t,4}]+5*D[y[t],{t,3}]+4*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to c_2 \exp \left (t \text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-4 \text {$\#$1}+4\&,2\right ]\right )+c_3 \exp \left (t \text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-4 \text {$\#$1}+4\&,3\right ]\right )+c_1 \exp \left (t \text {Root}\left [\text {$\#$1}^3+4 \text {$\#$1}^2-4 \text {$\#$1}+4\&,1\right ]\right )+c_4 e^{-t} \]
Sympy. Time used: 0.461 (sec). Leaf size: 231
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(4*y(t) + 5*Derivative(y(t), (t, 3)) + Derivative(y(t), (t, 4)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} e^{\frac {t \left (-8 + \frac {14 \cdot 2^{\frac {2}{3}}}{\sqrt [3]{3 \sqrt {393} + 95}} + \sqrt [3]{2} \sqrt [3]{3 \sqrt {393} + 95}\right )}{6}} \sin {\left (\frac {\sqrt [3]{2} \sqrt {3} t \left (- \sqrt [3]{3 \sqrt {393} + 95} + \frac {14 \sqrt [3]{2}}{\sqrt [3]{3 \sqrt {393} + 95}}\right )}{6} \right )} + C_{2} e^{\frac {t \left (-8 + \frac {14 \cdot 2^{\frac {2}{3}}}{\sqrt [3]{3 \sqrt {393} + 95}} + \sqrt [3]{2} \sqrt [3]{3 \sqrt {393} + 95}\right )}{6}} \cos {\left (\frac {\sqrt [3]{2} \sqrt {3} t \left (- \sqrt [3]{3 \sqrt {393} + 95} + \frac {14 \sqrt [3]{2}}{\sqrt [3]{3 \sqrt {393} + 95}}\right )}{6} \right )} + C_{3} e^{- t} + C_{4} e^{- \frac {t \left (4 + \frac {14 \cdot 2^{\frac {2}{3}}}{\sqrt [3]{3 \sqrt {393} + 95}} + \sqrt [3]{2} \sqrt [3]{3 \sqrt {393} + 95}\right )}{3}} \]