76.21.5 problem 5

Internal problem ID [17698]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 5. The Laplace transform. Section 5.7 (Impulse Functions). Problems at page 350
Problem number : 5
Date solved : Monday, March 31, 2025 at 04:25:11 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+2 y^{\prime }+3 y&=\sin \left (t \right )+\delta \left (t -3 \pi \right ) \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=0 \end{align*}

Maple. Time used: 0.390 (sec). Leaf size: 54
ode:=diff(diff(y(t),t),t)+2*diff(y(t),t)+3*y(t) = sin(t)+Dirac(t-3*Pi); 
ic:=y(0) = 0, D(y)(0) = 0; 
dsolve([ode,ic],y(t),method='laplace');
 
\[ y = \frac {{\mathrm e}^{3 \pi -t} \sqrt {2}\, \operatorname {Heaviside}\left (t -3 \pi \right ) \sin \left (\sqrt {2}\, \left (t -3 \pi \right )\right )}{2}+\frac {{\mathrm e}^{-t} \cos \left (\sqrt {2}\, t \right )}{4}-\frac {\cos \left (t \right )}{4}+\frac {\sin \left (t \right )}{4} \]
Mathematica. Time used: 1.598 (sec). Leaf size: 66
ode=D[y[t],{t,2}]+2*D[y[t],t]+3*y[t]==Sin[t]+DiracDelta[t-3*Pi]; 
ic={y[0]==0,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {1}{4} \left (-2 \sqrt {2} e^{3 \pi -t} \theta (t-3 \pi ) \sin \left (\sqrt {2} (3 \pi -t)\right )+\sin (t)-\cos (t)+e^{-t} \cos \left (\sqrt {2} t\right )\right ) \]
Sympy. Time used: 157.226 (sec). Leaf size: 185
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-Dirac(t - 3*pi) + 3*y(t) - sin(t) + 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (\left (- \frac {\sqrt {2} \int \left (\operatorname {Dirac}{\left (t - 3 \pi \right )} + \sin {\left (t \right )}\right ) e^{t} \sin {\left (\sqrt {2} t \right )}\, dt}{2} + \frac {\sqrt {2} \int \limits ^{0} \operatorname {Dirac}{\left (t - 3 \pi \right )} e^{t} \sin {\left (\sqrt {2} t \right )}\, dt}{2} + \frac {\sqrt {2} \int \limits ^{0} e^{t} \sin {\left (t \right )} \sin {\left (\sqrt {2} t \right )}\, dt}{2}\right ) \cos {\left (\sqrt {2} t \right )} + \left (\frac {\sqrt {2} \int \left (\operatorname {Dirac}{\left (t - 3 \pi \right )} + \sin {\left (t \right )}\right ) e^{t} \cos {\left (\sqrt {2} t \right )}\, dt}{2} - \frac {\sqrt {2} \int \limits ^{0} \operatorname {Dirac}{\left (t - 3 \pi \right )} e^{t} \cos {\left (\sqrt {2} t \right )}\, dt}{2} - \frac {\sqrt {2} \int \limits ^{0} e^{t} \sin {\left (t \right )} \cos {\left (\sqrt {2} t \right )}\, dt}{2}\right ) \sin {\left (\sqrt {2} t \right )}\right ) e^{- t} \]