Internal
problem
ID
[17637]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
4.
Second
order
linear
equations.
Section
4.7
(Variation
of
parameters).
Problems
at
page
280
Problem
number
:
31
Date
solved
:
Monday, March 31, 2025 at 04:23:19 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
ode:=t^2*diff(diff(y(t),t),t)+7*t*diff(y(t),t)+5*y(t) = t; dsolve(ode,y(t), singsol=all);
ode=t^2*D[y[t],{t,2}]+7*t*D[y[t],t]+5*y[t]==t; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t**2*Derivative(y(t), (t, 2)) + 7*t*Derivative(y(t), t) - t + 5*y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)