Internal
problem
ID
[17623]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
4.
Second
order
linear
equations.
Section
4.7
(Variation
of
parameters).
Problems
at
page
280
Problem
number
:
17
Date
solved
:
Monday, March 31, 2025 at 04:22:51 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(t),t),t)+4*y(t) = 2*csc(1/2*t); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]+4*y[t]==2*Csc[t/2]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(4*y(t) + Derivative(y(t), (t, 2)) - 2/sin(t/2),0) ics = {} dsolve(ode,func=y(t),ics=ics)