Internal
problem
ID
[17619]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
4.
Second
order
linear
equations.
Section
4.7
(Variation
of
parameters).
Problems
at
page
280
Problem
number
:
13
Date
solved
:
Monday, March 31, 2025 at 04:22:44 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=4*diff(diff(y(t),t),t)-4*diff(y(t),t)+y(t) = 16*exp(1/2*t); dsolve(ode,y(t), singsol=all);
ode=4*D[y[t],{t,2}]-4*D[y[t],t]+y[t]==16*Exp[t/2]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(y(t) - 16*exp(t/2) - 4*Derivative(y(t), t) + 4*Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)