Internal
problem
ID
[17562]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
4.
Second
order
linear
equations.
Section
4.3
(Linear
homogeneous
equations
with
constant
coefficients).
Problems
at
page
239
Problem
number
:
60
Date
solved
:
Monday, March 31, 2025 at 04:17:34 PM
CAS
classification
:
[[_Emden, _Fowler]]
ode:=x^2*diff(diff(y(x),x),x)+2*x*diff(y(x),x)+4*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+2*x*D[y[x],x]+4*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + 2*x*Derivative(y(x), x) + 4*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)