76.13.2 problem 2

Internal problem ID [17513]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 4. Second order linear equations. Section 4.3 (Linear homogeneous equations with constant coefficients). Problems at page 239
Problem number : 2
Date solved : Monday, March 31, 2025 at 04:16:12 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x)+3*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{x}+c_2 \right ) {\mathrm e}^{-2 x} \]
Mathematica. Time used: 0.011 (sec). Leaf size: 20
ode=D[y[x],{x,2}]+3*D[y[x],x]+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-2 x} \left (c_2 e^x+c_1\right ) \]
Sympy. Time used: 0.149 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x) + 3*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} e^{- x}\right ) e^{- x} \]