76.12.23 problem 35

Internal problem ID [17508]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 4. Second order linear equations. Section 4.2 (Theory of second order linear homogeneous equations). Problems at page 226
Problem number : 35
Date solved : Monday, March 31, 2025 at 04:16:07 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=x^{{1}/{4}} {\mathrm e}^{2 \sqrt {x}} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 25
ode:=x^2*diff(diff(y(x),x),x)-(x-3/16)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x^{{1}/{4}} \left (c_1 \sinh \left (2 \sqrt {x}\right )+c_2 \cosh \left (2 \sqrt {x}\right )\right ) \]
Mathematica. Time used: 0.038 (sec). Leaf size: 41
ode=x^2*D[y[x],{x,2}]-(x-1875/10000)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} e^{-2 \sqrt {x}} \sqrt [4]{x} \left (2 c_1 e^{4 \sqrt {x}}-c_2\right ) \]
Sympy. Time used: 0.083 (sec). Leaf size: 34
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - (x - 3/16)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \sqrt {x} \left (C_{1} J_{\frac {1}{2}}\left (2 i \sqrt {x}\right ) + C_{2} Y_{\frac {1}{2}}\left (2 i \sqrt {x}\right )\right ) \]