76.12.11 problem 22

Internal problem ID [17496]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 4. Second order linear equations. Section 4.2 (Theory of second order linear homogeneous equations). Problems at page 226
Problem number : 22
Date solved : Monday, March 31, 2025 at 04:15:50 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+4 y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=diff(diff(y(t),t),t)+4*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = c_1 \sin \left (2 t \right )+c_2 \cos \left (2 t \right ) \]
Mathematica. Time used: 0.015 (sec). Leaf size: 20
ode=D[y[t],{t,2}]+4*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to c_1 \cos (2 t)+c_2 \sin (2 t) \]
Sympy. Time used: 0.052 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(4*y(t) + Derivative(y(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} \sin {\left (2 t \right )} + C_{2} \cos {\left (2 t \right )} \]