76.8.18 problem 18

Internal problem ID [17436]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 3. Systems of two first order equations. Section 3.4 (Complex Eigenvalues). Problems at page 177
Problem number : 18
Date solved : Monday, March 31, 2025 at 04:13:44 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=3 x \left (t \right )+a y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=-6 x \left (t \right )-4 y \left (t \right ) \end{align*}

Maple. Time used: 0.124 (sec). Leaf size: 121
ode:=[diff(x(t),t) = 3*x(t)+a*y(t), diff(y(t),t) = -6*x(t)-4*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_1 \,{\mathrm e}^{\frac {\left (-1+\sqrt {49-24 a}\right ) t}{2}}+c_2 \,{\mathrm e}^{-\frac {\left (1+\sqrt {49-24 a}\right ) t}{2}} \\ y \left (t \right ) &= \frac {c_1 \,{\mathrm e}^{\frac {\left (-1+\sqrt {49-24 a}\right ) t}{2}} \sqrt {49-24 a}-c_2 \,{\mathrm e}^{-\frac {\left (1+\sqrt {49-24 a}\right ) t}{2}} \sqrt {49-24 a}-7 c_1 \,{\mathrm e}^{\frac {\left (-1+\sqrt {49-24 a}\right ) t}{2}}-7 c_2 \,{\mathrm e}^{-\frac {\left (1+\sqrt {49-24 a}\right ) t}{2}}}{2 a} \\ \end{align*}
Mathematica. Time used: 0.008 (sec). Leaf size: 189
ode={D[x[t],t]==3*x[t]+a*y[t],D[y[t],t]==-6*x[t]-4*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {e^{-\frac {1}{2} \left (\sqrt {49-24 a}+1\right ) t} \left (c_1 \left (\left (\sqrt {49-24 a}+7\right ) e^{\sqrt {49-24 a} t}+\sqrt {49-24 a}-7\right )+2 a c_2 \left (e^{\sqrt {49-24 a} t}-1\right )\right )}{2 \sqrt {49-24 a}} \\ y(t)\to \frac {e^{-\frac {1}{2} \left (\sqrt {49-24 a}+1\right ) t} \left (c_2 \left (\left (\sqrt {49-24 a}-7\right ) e^{\sqrt {49-24 a} t}+\sqrt {49-24 a}+7\right )-12 c_1 \left (e^{\sqrt {49-24 a} t}-1\right )\right )}{2 \sqrt {49-24 a}} \\ \end{align*}
Sympy. Time used: 0.203 (sec). Leaf size: 95
from sympy import * 
t = symbols("t") 
a = symbols("a") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-a*y(t) - 3*x(t) + Derivative(x(t), t),0),Eq(6*x(t) + 4*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - \frac {C_{1} \left (\sqrt {49 - 24 a} + 7\right ) e^{\frac {t \left (\sqrt {49 - 24 a} - 1\right )}{2}}}{12} + \frac {C_{2} \left (\sqrt {49 - 24 a} - 7\right ) e^{- \frac {t \left (\sqrt {49 - 24 a} + 1\right )}{2}}}{12}, \ y{\left (t \right )} = C_{1} e^{\frac {t \left (\sqrt {49 - 24 a} - 1\right )}{2}} + C_{2} e^{- \frac {t \left (\sqrt {49 - 24 a} + 1\right )}{2}}\right ] \]