76.8.14 problem 14

Internal problem ID [17432]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 3. Systems of two first order equations. Section 3.4 (Complex Eigenvalues). Problems at page 177
Problem number : 14
Date solved : Monday, March 31, 2025 at 04:13:37 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=-5 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=x \left (t \right )+a y \left (t \right ) \end{align*}

Maple. Time used: 0.112 (sec). Leaf size: 95
ode:=[diff(x(t),t) = -5*y(t), diff(y(t),t) = x(t)+a*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_1 \,{\mathrm e}^{\frac {\left (a +\sqrt {a^{2}-20}\right ) t}{2}}+c_2 \,{\mathrm e}^{-\frac {\left (-a +\sqrt {a^{2}-20}\right ) t}{2}} \\ y \left (t \right ) &= -\frac {c_1 \left (a +\sqrt {a^{2}-20}\right ) {\mathrm e}^{\frac {\left (a +\sqrt {a^{2}-20}\right ) t}{2}}}{10}-\frac {c_2 \left (a -\sqrt {a^{2}-20}\right ) {\mathrm e}^{\frac {\left (a -\sqrt {a^{2}-20}\right ) t}{2}}}{10} \\ \end{align*}
Mathematica. Time used: 0.007 (sec). Leaf size: 207
ode={D[x[t],t]==-5*y[t],D[y[t],t]==x[t]+a*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {e^{\frac {1}{2} \left (a-\sqrt {a^2-20}\right ) t} \left (-a c_1 \left (e^{\sqrt {a^2-20} t}-1\right )+\sqrt {a^2-20} c_1 \left (e^{\sqrt {a^2-20} t}+1\right )-10 c_2 \left (e^{\sqrt {a^2-20} t}-1\right )\right )}{2 \sqrt {a^2-20}} \\ y(t)\to \frac {e^{\frac {1}{2} \left (a-\sqrt {a^2-20}\right ) t} \left (2 c_1 \left (e^{\sqrt {a^2-20} t}-1\right )+c_2 \left (a \left (e^{\sqrt {a^2-20} t}-1\right )+\sqrt {a^2-20} \left (e^{\sqrt {a^2-20} t}+1\right )\right )\right )}{2 \sqrt {a^2-20}} \\ \end{align*}
Sympy. Time used: 0.195 (sec). Leaf size: 97
from sympy import * 
t = symbols("t") 
a = symbols("a") 
x = Function("x") 
y = Function("y") 
ode=[Eq(5*y(t) + Derivative(x(t), t),0),Eq(-a*y(t) - x(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - \frac {C_{1} \left (a + \sqrt {a^{2} - 20}\right ) e^{\frac {t \left (a - \sqrt {a^{2} - 20}\right )}{2}}}{2} - \frac {C_{2} \left (a - \sqrt {a^{2} - 20}\right ) e^{\frac {t \left (a + \sqrt {a^{2} - 20}\right )}{2}}}{2}, \ y{\left (t \right )} = C_{1} e^{\frac {t \left (a - \sqrt {a^{2} - 20}\right )}{2}} + C_{2} e^{\frac {t \left (a + \sqrt {a^{2} - 20}\right )}{2}}\right ] \]