Internal
problem
ID
[17402]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
3.
Systems
of
two
first
order
equations.
Section
3.2
(Two
first
order
linear
differential
equations).
Problems
at
page
142
Problem
number
:
20
Date
solved
:
Monday, March 31, 2025 at 04:12:57 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = -5*x(t)+4*y(t)-35, diff(y(t),t) = -2*x(t)+y(t)-11]; dsolve(ode);
ode={D[x[t],t]==-5*x[t]+4*y[t]-35,D[y[t],t]==-2*x[t]+y[t]-11}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(5*x(t) - 4*y(t) + Derivative(x(t), t) + 35,0),Eq(2*x(t) - y(t) + Derivative(y(t), t) + 11,0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)