Internal
problem
ID
[17396]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
3.
Systems
of
two
first
order
equations.
Section
3.2
(Two
first
order
linear
differential
equations).
Problems
at
page
142
Problem
number
:
12
Date
solved
:
Monday, March 31, 2025 at 04:12:47 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = x(t)-4*y(t)+2*t, diff(y(t),t) = x(t)-3*y(t)-3]; ic:=x(0) = 1y(0) = -2; dsolve([ode,ic]);
ode={D[x[t],t]==x[t]-4*y[t]+2*t,D[y[t],t]==x[t]-3*y[t]-3}; ic={x[0]==1,y[0]==-2}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-2*t - x(t) + 4*y(t) + Derivative(x(t), t),0),Eq(-x(t) + 3*y(t) + Derivative(y(t), t) + 3,0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)