76.6.3 problem 3

Internal problem ID [17387]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 3. Systems of two first order equations. Section 3.2 (Two first order linear differential equations). Problems at page 142
Problem number : 3
Date solved : Monday, March 31, 2025 at 04:12:35 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=-2 t x \left (t \right )+y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=3 x \left (t \right )-y \left (t \right ) \end{align*}

Maple. Time used: 0.171 (sec). Leaf size: 172
ode:=[diff(x(t),t) = -2*t*x(t)+y(t), diff(y(t),t) = 3*x(t)-y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{-t} \left (c_2 \operatorname {KummerU}\left (-\frac {1}{4}, \frac {1}{2}, -t^{2}+t -\frac {1}{4}\right )+c_1 \operatorname {KummerM}\left (-\frac {1}{4}, \frac {1}{2}, -t^{2}+t -\frac {1}{4}\right )\right ) \\ y \left (t \right ) &= -\frac {{\mathrm e}^{-t} \left (-16 c_2 \operatorname {KummerU}\left (-\frac {1}{4}, \frac {1}{2}, -t^{2}+t -\frac {1}{4}\right ) t^{2}-16 t^{2} \operatorname {KummerM}\left (-\frac {1}{4}, \frac {1}{2}, -t^{2}+t -\frac {1}{4}\right ) c_1 +16 c_2 \operatorname {KummerU}\left (-\frac {1}{4}, \frac {1}{2}, -t^{2}+t -\frac {1}{4}\right ) t +16 t \operatorname {KummerM}\left (-\frac {1}{4}, \frac {1}{2}, -t^{2}+t -\frac {1}{4}\right ) c_1 +c_2 \operatorname {KummerU}\left (\frac {3}{4}, \frac {1}{2}, -t^{2}+t -\frac {1}{4}\right )+4 \operatorname {KummerM}\left (\frac {3}{4}, \frac {1}{2}, -t^{2}+t -\frac {1}{4}\right ) c_1 -8 c_2 \operatorname {KummerU}\left (-\frac {1}{4}, \frac {1}{2}, -t^{2}+t -\frac {1}{4}\right )-8 c_1 \operatorname {KummerM}\left (-\frac {1}{4}, \frac {1}{2}, -t^{2}+t -\frac {1}{4}\right )\right )}{4 \left (2 t -1\right )} \\ \end{align*}
Mathematica. Time used: 0.008 (sec). Leaf size: 143
ode={D[x[t],t]==-2*x[t]+y[t],D[y[t],t]==3*x[t]-y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {1}{26} e^{-\frac {1}{2} \left (3+\sqrt {13}\right ) t} \left (c_1 \left (-\left (\sqrt {13}-13\right ) e^{\sqrt {13} t}+13+\sqrt {13}\right )+2 \sqrt {13} c_2 \left (e^{\sqrt {13} t}-1\right )\right ) \\ y(t)\to \frac {1}{26} e^{-\frac {1}{2} \left (3+\sqrt {13}\right ) t} \left (6 \sqrt {13} c_1 \left (e^{\sqrt {13} t}-1\right )+c_2 \left (\left (13+\sqrt {13}\right ) e^{\sqrt {13} t}+13-\sqrt {13}\right )\right ) \\ \end{align*}
Sympy. Time used: 0.089 (sec). Leaf size: 87
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(2*t*x(t) - y(t) + Derivative(x(t), t),0),Eq(-3*x(t) + y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = C_{1} x_{0}{\left (t \right )} + C_{2} x_{0}{\left (t \right )} \int \frac {\left (e^{\int \left (-1\right )\, dt}\right ) e^{\int \left (- 2 t\right )\, dt}}{x_{0}^{2}{\left (t \right )}}\, dt, \ y{\left (t \right )} = C_{1} y_{0}{\left (t \right )} + C_{2} \left (y_{0}{\left (t \right )} \int \frac {\left (e^{\int \left (-1\right )\, dt}\right ) e^{\int \left (- 2 t\right )\, dt}}{x_{0}^{2}{\left (t \right )}}\, dt + \frac {\left (e^{\int \left (-1\right )\, dt}\right ) e^{\int \left (- 2 t\right )\, dt}}{x_{0}{\left (t \right )}}\right )\right ] \]