Internal
problem
ID
[17378]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.7
(Substitution
Methods).
Problems
at
page
108
Problem
number
:
30
Date
solved
:
Monday, March 31, 2025 at 04:10:31 PM
CAS
classification
:
[_separable]
ode:=5*x*y(x)^2+5*y(x)+(5*x^2*y(x)+5*x)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(5*x*y[x]^2+5*y[x])+(5*x^2*y[x]+5*x)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(5*x*y(x)**2 + (5*x**2*y(x) + 5*x)*Derivative(y(x), x) + 5*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)